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Abstract

The statistics of sub-Kolmogorov-scale droplet breakup are investigated at
a higher Taylor Reynolds number (Re),) than similar work at low Re,,
(Cristini et al., J. Fluid Mech., vol. 492, 2003) to elucidate intermittency and
neck pinch off behaviors. To this end, a boundary element method (BEM) is
developed to enable simulations of the stochastic Stokes flow about ensembles
of droplets along individual trajectories in homogeneous and isotropic turbu-
lence (HIT), made possible through adaptive mesh refinement and fast mul-
tipole acceleration. Droplet deformation statistics, near-breakup behavior,
and neck thinning statistics at Rey, =~ 310 are presented. Results highlight
the effect of the HIT’s strain rate intermittency on the droplet deformation
statistics, and investigations of subcritical and critical neck thinning events
provide insights into the critical disturbances leading to breakup and transi-
tion of the neck contraction to the established viscous pinch-off regime. Both
the marked influence of intermittency on the droplet deformation statistics
and local strain rate effects very close into the terminal pinch-off regime em-
phasize the multiscale nature of the problem, even for droplets in the idealized
Stokes regime.
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1. Introduction

The deformation and breakup of droplets in turbulent flows is relevant for
a variety of engineering applications, ranging from the food and petroleum
industry to nanoemulsion/nanoparticle formation in the pharmaceutical in-
dustry. Ni [1] gave a detailed review of the deformation and breakup of drops
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and bubbles in turbulent flows, while Elghobashi [2]| provided a review of di-
rect numerical simulation (DNS) applied to such problems. Both reviews
classify two regimes for droplet deformation: one in which the droplet diam-
eter, d, is larger than the Kolmogorov dissipation scale of the surrounding
turbulence (d > 7), and the other where the diameter is smaller (d < 7).
The Kolmogorov length (1) and time (7,) scales are

where v, = p./pe is the kinematic viscosity of the carrier fluid, (¢) =
ve(Vu : Vu) is the rate of turbulent energy dissipation, and the sub-Kolmogorov
shear rate (7,) is the inverse of 7,,. Note that the Reynolds number based on
the Kolmogorov scales is unity.

For d > n, inertial forces dominate the droplet deformation, following
the Kolmogorov-Hinze framework [3, 4]. The droplet breakup is therefore
governed by the Weber number, We = p.Cy({)d)?/3d/c, where o is the sur-
face tension and Cs is the Kolmogorov constant for homogeneous isotropic
turbulence (HIT) [1]. A wealth of recent work has leveraged numerical ex-
periments to answer previously unsolved questions about droplets near the
Kolmogorov-Hinze (K-H) scale (dxy ~ pe/°03/%()=2/5) and their connec-
tion with extreme local dissipation events by performing direct numerical
simulation (DNS) of HIT laden with droplets [5, 6, 7, 8, 9]. Vela-Martin
and Avila [5] performed ensembles of droplet breakup simulations for d > n
in resolved HIT and demonstrated a non-vanishing breakup rate below the
K-H scale, which may be difficult to capture experimentally or computa-
tionally because of the long timescales required to observe droplets formed
at low breakup rates. They postulated that breakup below the K-H scale
is due to the small-scale extreme events induced by the surrounding turbu-
lence intermittency. On the other hand, Crialesi-Esposito et al. [8] suggested
that the formation of sub-K-H droplets is due to capillary effects when large
droplets rupture, and the intermittent high local dissipation is linked to cap-
illary vorticity production during breakup, rather than the other way around.
This conclusion was established by way of a numerical experiment in which
high vorticity regions were selectively penalized in the dispersed and carrier
fluids. Several publications [6, 7, 9] have demonstrated that the dispersed
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phase affects the small-scale turbulent fluctuations, and recently Saeedipour
and Schneiderbauer [9] revealed a strong link between the enstrophy gener-
ation due to vortex stretching and that due to surface tension, which may
serve as a physical basis for the K-H scale.

As opposed to these studies, the present work focuses on the viscous-
dominated regime (d < 7), which is relevant to applications such as na-
noemulsion formation, aerosols, and atmospheric clouds [1, 10]. Both Box-
all et al. [11] and Gupta et al. [12] have produced experimental evidence
for sub-Kolmogorov droplet scaling in emulsion formation in viscous car-
rier fluids. For d < 7, the deformation of the droplet is driven by viscous
forces, and the relevant non-dimensional parameter is the capillary number:
Ca = \/pepele)ajo = pead,/o, commonly defined using the undeformed
droplet radius, a = d/2. Cristini et al. [13| estimated the droplet radius at
which viscous breakup was likely to scale as a/n ~ pe 5/ 40pi/ 4<€>_1/ 4 sug-
gesting that a combination of low surface tension, high carrier fluid viscosity,
and significant energy input is required to achieve sub-Kolmogorov droplet
breakup. As a result, in many cases with low viscosity carrier fluids and high
surface tension (e.g. water droplets in air), the resulting C'a is low enough
that the deformation of sub-Kolmogorov droplets can be ignored, and simu-
lations often assume a non-deformed droplet surface [2].

In cases where the droplet deformation is significant, computational ap-
proaches can be divided into two categories. For relatively small droplet
deformations (Ca = 0.1), numerous computational works [14, 15, 16, 17|
have applied the Maffettone-Minale (MM) model for droplet deformation,
which assumes that the droplet shape can be described by the evolution of
a triaxial ellipsoid [18|, and there have even been efforts to predict viscous-
range velocity gradients from large-eddy simulations as input to the MM
model [19]. The original MM model coefficients were determined based on
perturbation theory at small deformations (Ca < 1) and therefore lose ac-
curacy for C'a 2 0.1, although extensions of the MM model parameters can
extend the model into the finite C'a regime [20].

Despite these model limitations, relatively few studies have numerically
resolved the deformation of sub-Kolmogorov droplets at sufficient C'a to re-
sult in breakup. Cristini et al. [13] were the first to conduct such a study by
recording strain rates of massless tracer particles in pseudo-spectral DNS of
HIT and calculating the resulting droplet deformation history using bound-
ary element method (BEM) simulations. The key assumptions enabling this



one-way coupling of the surrounding turbulent flow to the droplet deforma-
tion were: (i) the droplets were in a dilute suspension, (ii) a similar density
of the dispersed and continuous phases (pg ~ p.), and (iii) the droplet size
being much smaller than the Kolmogorov scale (d < 7). The result is that
both the droplet Reynolds number and Stokes number are much smaller
than unity: Rey = d?/(myv.) = (d/n)* < 1 and Sty = pad?®/(18u.m,) =
(pa/pe)(Req/18) < 1. These assumptions enable the assumption of Stokes
flow around the droplet, which is subject to a time-varying linear velocity gra-
dient tensor imposed by the surrounding HIT. Cristini et al. [13] considered a
Taylor Reynolds number of Re),, = 54 and focused on a drop-to-carrier fluid
viscosity ratio of A = ug/p. = 1, although there was a limited discussion of
the cases A = 0.1 and 5. They reached several conclusions through a statisti-
cal analysis of droplet breakup events. First, they demonstrated that droplet
deformation, rather than rotation, is the dominant contribution to droplet
reorientation (aside from extreme deformations prior to breakup). Secondly,
they showed from isolated trajectories that droplet breakup is dependent on
the local flow history, rather than the instantaneous strain rate alone, since
the strain history determines if elongated droplets will form a critical neck
radius to induce pinching or relax back to a spherical shape. Finally, they
pointed to the role of rare (intermittent) events as a driver for the fluctua-
tions required for droplet breakup, and point to the extension of their study
to higher Rey,.

More recent studies |21, 22| have returned to the topic of resolving sub-
Kolmogorov droplet deformation using lattice Boltzmann method (LBM)
simulations. Milan et al. [21] approached the problem using LBM coupled
with a diffuse interface model, where the droplet is immersed in a three-
dimensional grid. Through a set of simulations at varying capillary num-
bers, Milan et al. [21] demonstrated a lower critical capillary number than
predicted by the MM model. Taglienti et al. [22] recently developed an al-
ternative LBM for the same problem by coupling LBM with an immersed
boundary method (IBM) for the droplet interface. They considered trajecto-
ries taken from the publically-available TURB-Lagr database, which contains
histories of particle position, velocity, acceleration, and flow velocity gradi-
ents from an ensemble of 327680 tracers advected for a total time 7" ~ 1957,
in pseudo-spectral DNS of HIT at Re,, ~ 310 [23]. Through an ensemble
of simulations at A = 1 and Ca = 0.05-0.25 at Reynolds numbers from the
Stokes regime to above unity, they compared statistics of the maximum elon-
gation eigenvalue and orientation parameter to the linear theory of Rallison
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and Acrivos [24] and Rallison [25]. However, they did not consider large
enough Ca to result in breakup events.

In the present study, we seek to expand the insights of Cristini et al. [13]
on sub-Kolmogorov droplet deformation by considering droplet breakup and
neck-thinning behavior at a larger Taylor Reynolds number than the low Rey,,.
regime [26, 27| considered by Cristini et al. [13]. A study of droplet deforma-
tion at this higher Re,, is of interest since the viscous stresses acting on the
droplet are directly coupled to fluctuations in the instantaneous dissipation
rate and to turbulent intermittency. Intermittency in the local dissipation
rate also raises the possibility of droplet breakup during extreme events in
regimes where C'a based on (¢) (rather than £(t)) would not suggest breakup,
as suggested by work on larger K-H droplets [5, 9]. Notably, existing scaling
laws for sub-Kolmogorov droplets are derived from Kolmogorov scaling based
on (g) [28, 11, 12|, without explicitly considering the role of intermittency.
These factors motivate the present study, in which the deformation, neck-
ing, and breakup of sub-Kolmogorov droplets in HIT are explored using fully
interface-resolved simulations in the higher Re,, regime.

In contrast to fully resolved two-phase DNS studies, where both the tur-
bulent flow and droplet interfaces are simultaneously resolved [5, 6, 7, 8, 9],
the present study follows a one-way coupled approach, as in Cristini et al.
[13] and Taglienti et al. [20]. Specifically, we make use of the TURB-Lagr
database of time-resolved Lagrangian velocity gradient tensor histories along
Langrangian tracer trajectories from DNS of HIT at Re,, ~ 310 [14]. On the
droplet scale, we impose these velocity gradient tensor histories as prescribed,
time-varying linear flows to individual sub-Kolmogorov droplets, which are
numerically resolved using an in-house BEM. Considering an ensemble of
droplets in HIT at A = 1 and C'a = 0.3, we present statistics of droplet de-
formation and strain rates, with a focus on intermittent events near breakup
and statistics of both subcritical and critical droplet neck formation.

The remainder of the paper is organized as follows: first, in section 2,
the simulation framework is outlined, along with a brief description of how
the TURB-Lagr database is used. In §3, we outline the BEM along with
its numerical implementation. This is followed by a discussion of the AMR
scheme for the droplet surface mesh in §4. The results for ensembles of
droplets in HIT are presented in §5, after which conclusions are summarized
in §6 to conclude the paper.



2. Simulation framework and use of the TURB-Lagr HIT database

The present study makes use of the publicly-available TURB-Lagr database
[23], which contains an ensemble of Lagrangian tracer data obtained from
DNS of incompressible HIT at Rey, =~ 310. These simulations were per-
formed using a fully dealiased pseudo-spectral method in a triply periodic
cubic domain with 10242 grid points. The database includes the trajectories
of 327680 massless tracer particles randomly placed throughout the domain,
each tracked for a duration of approximately 1957,. For each tracer, histories
of the tracer position, velocity, acceleration, and velocity gradient tensor of
the surrounding flow are recorded with a time resolution of approximately
0.17,. For further details, the reader is referred to Biferale et al. [23].

For the purposes of the present study, we use only the velocity gradient
tensor extracted from the TURB-Lagr database to prescribe the imposed
time-varying background flow acting on the droplet. Specifically, the droplet
experiences a time-varying linear velocity field specified by

u™(z,t) = E*(t) - (1), (3)

where E™(t) is the velocity gradient tensor from the HIT database at time ¢,
and x(t) describes the position of the droplet surface relative to the droplet’s
surface centroid, which is fixed at the origin in the frame of reference of the
droplet. A depiction of this simulation framework is shown in figure 1. In this
one-way coupled approach, we investigate the response of the droplets to the
imposed strain and rotation rate tensors from individual HIT trajectories.
In the following sections, the numerical method for the droplet-scale BEM
simulations is described.

3. Numerical method

We now detail the governing equations and boundary conditions govern-
ing flow on the droplet scale, basics of the BEM, and our numerical imple-
mentation.

3.1. Governing equations and boundary conditions

On the droplet scale (a < 1), the flow both in and outside the droplet is
governed by the Stokes equations:

V.II=0, V-u=0, (4)



Figure 1: Depiction of the BEM simulation framework. A sample trajectory from the
TURB-Lagr database Biferale et al. [23], colored by the instantaneous dissipation rate
(a). Unsteady velocity gradient tensor history, E°°(t), along the trajectory from the
database (b). A time history of the components E;’f(t) for a sample trajectory is shown
later in figure 5(a). BEM simulation of droplet deformation subject to E°°(t) along a
sample trajectory (c).



where the stress tensor is defined as
I = —pI + 1 (Vu+ (V)T (5)

with the dynamic viscosity taking the value pg within the droplet and .
outside the droplet.

For a drop immersed in a fluid with an imposed ambient velocity at
infinity of w™, the far-field boundary condition can be written as u —
u™ as ||xz|| — oo. In the present work, we consider droplets with their
surface centroid fixed at the origin, such that @ represents the vector from
the surface centroid to a point on the droplet surface, and u™(x,t) is inter-
polated from the HIT database, as described in §2. On the droplet surface
S, the flow velocity is continuous between the droplet and carrier fluids,
such that the boundary condition reads as u(® = u( for x € S. Finally,
the stress balance equation to counteract the discontinuity in the interfacial
tension force (Af) becomes

Af = O — fd) = (H(C) - H<d>> n=0(V, n)n-Vy (6
——
—2H
where o is the surface tension, H is the mean curvature of the surface, and
the surface tangential gradient operator is defined by V, = (I —nn) -V =
V—na%. For the present case, we do not consider surfactant effects, resulting
in Af = Aftn=—-2Hon.

3.2. Boundary element method

The original BEM for Stokes flow for A # 0 was derived by Rallison and
Acrivos [24], and the method has been subsequently used to study droplet
breakup in simple flows [29, 30], Marangoni effects due to surfactants [31, 32,
33, 34, 35|, highly concentrated emulsions [36, 37, 38, 39, 40|, and droplet flow
through constrictions or packed beds [41, 42, 43]; a comprehensive overview
of BEM theory, numerics, and applications is given by Pozrikidis [44]. The
essence of the BEM is to reformulate the Stokes flow problem as boundary
integrals on the fluid boundaries, expressed in terms of the Green’s functions
(the Stokeslet and Stresslet), which are given by

0ij Tl TiriTk

() — T.. - _
G = o g T = g




where r = x — xp in which x is the observation (field) point, and x is
the source point (pole). By employing the Lorentz reciprocal identity and
taking @, xy € S, Pozrikidis [44] details how the derivation of Rallison and
Acrivos [24] produces a Fredholm integral equation of the second kind for the
interfacial velocity u:

w(e) = 1o 1) - g [ AhlenGy(e - auds(an)

A—11
+)\—HE /Suz(wo),-rzgk(m - wo)nk(:’;O)ds(wO)'

(8)

The formulation of equation 8 in terms of the Stokeslet and Stresslet al-
lows the flow around the droplet to be expressed only in terms of the bound-
ary values on the droplet interface. Numerically, this enables the Stokes flow
equations to be solved using a discretization of the droplet surface rather
than the three-dimensional fluid domain as in the LBM [21, 22]. For A = 1,
equation 8 reduces to a particularly simple form through elimination of the
second surface integral, named the double layer potential (DLP). This leaves
only the single layer potential (SLP) integral and the applied external flow.
For any value of A, equation 8 can be solved for the interfacial velocity u(x)
to evolve the shape of the droplet.

3.3. Numerical implementation
In discrete form, the surface integrals in equation 8 are discretized into
surface elements and associated quadrature points as

> Z [AfH(@o) — Af* ()] ni(@o) Gij(@

ielm=1 gpt=1

U](m): A1 uj m 87].1uc

wo)dS(wo)]

+u - Z Z ui(zo) — ui()] Tv:jk(w—wo)nk($0>ds<m0>+Uj(w)].

zelm 1 gpt=1

(9)
where we have made use of the singularity subtractions definitions of Pozrikidis
[44] to analytically eliminate the singularities in G;;(r) and T} (r) as 7 — 0.
In the present method, we discretize the droplet surface using an unstruc-
tured surface grid of curved six-node Lagrange triangular elements, which
is dynamically adjusted in time following an AMR scheme (§4) to resolve
the deformation of the droplet surface. The integrals in equation 8 are per-
formed using a three-point Gauss-Legendre quadrature [45] where the values
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at the element nodes are interpolated on the element using the Lagrange
basis functions. In contrast to the method outlined by Pozrikidis [44], we
do not modify the shape functions to account for the displacement of edge
nodes away from their ideal positions at the centerpoints between corner
nodes; instead, we regularize their positions on each time step through a
mesh smoothing scheme (§4.1.2). The surface normal vector (n) and mean
and Gaussian curvatures (H and K) on the element, which are critical for
the accuracy of the BEM, are evaluated using identities based on the fun-
damental forms of the curved element surfaces. Appendix A provides the
details of the discretization, along with the order of accuracy of the present
method compared to existing methods.

To update the droplet shape using the velocities calculated from equation
8, the positions of the surface nodes on the droplet surface are advanced in
time with a second-order Runge-Kutta (RK2) method applying equation 9
evaluated at the nodes. To limit the cost of the simulations, the time step is
dynamically adjusted according to the formula suggested by Zinchenko and
Davis [41], which reads as

At=FE min [ (@D min (|l — 20|, (10)
od ipt=1,...,N, ipt=1,..,N ")

where min (||& — @,5-||) is the minimum distance between a given node (ipt)
and any of its neighbors (jpt), Fmax = max (k1 2) = max (H +VH?— K) is
the maximum of the principal surface curvatures, and F'is a numerical factor
of order one. This allows the time step to adjust dynamically as the droplet
deforms and the mesh elements become finer. After the node positions have
been advanced on each time step, the surface grid is adjusted according to the
algorithm outlined in §4, and the droplet volume and centroid are rescaled
(by < 107°) to preserve their initial values.

3.3.1. Treatment of non-unity viscosity ratios

For non-unity viscosity ratios (A # 1), equation 9 results in a dense linear
system for u(x), which appears on the right-hand side in the DLP integral.
We solve this matrix equation using a matrix-free restarted generalized mini-
mal residual method (GMRES(k)) algorithm [46], which Zinchenko and Davis
[41] found effective for the Stokes flow BEM. The matrix-free GMRES(k) for-
mulation is especially valuable since it avoids the memory-prohibitive storage
of the fully-dense matrix associated with the DLP integral. To improve the
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convergence of the iterative solver, we also use Wielandt eigenvalue deflation
to eliminate the A — 0 and A\ — oo solutions from the spectrum of the
integral operator [44, 47].

3.4. Fast multipole method acceleration

The update of the droplet surface velocities using equation 9 requires
O(N3) work due to the SLP and DLP integrals of the Stokeslet and Stresslet
Green’s functions across every source point (xy) for each target (x). For
A =1, each RK2 time step requires two of these evaluations, while the cost
is even higher for A # 1 due to the dense matrix-vector multiplication (DLP
integration) at each GMRES(k) iteration. This O(N3) cost quickly becomes
prohibitively expensive as the grid size becomes large.

The fast multipole method (FMM) was introduced by Greengard and
Rokhlin [48] for rapidly evaluating pairwise potentials between M source
points and N target points, which traditionally requires O(N M) work. The
FMM reduces the cost to O((N + M) log®?*(1/ewr)) for a given tolerance e
by expanding the Green’s functions using a multipole expansion to compress
groups of sources across a hierarchy of length scales. We make use of the
Laplace kernels in the Flatiron Institute’s FMMS3D software library [49] to
evaluate the singularity-subtracted sums in equation 9.

Figure 2(a) shows the timings for the direct calculation and FMM eval-
uation (at €, = 107°) of a single SLP and DLP integral evaluations across
a range of grid sizes, while figure 2(b) shows the relative speed-up offered by
the FMM. The directly-evaluated SLP and DLP integrals obey the expected
O(N3) scaling across grid sizes, with a consistently faster DLP evaluation
due to the lower number of floating-point operations required to calculate
the integrand compared to the SLP. The FMM integral evaluations obey an
O(N}) scaling for No 2 1000, with the nonlinear scaling below this grid
size being due to the overhead cost of setting up the FMM data structures.
As shown in figure 2(b), the FMM outperforms direct evaluation of the SLP
and DLP integrals for grid sizes Na 2 300. To exploit this crossover, the
BEM switches to the FMM for Na > 300, though simulation values typically
exceed this threshold.

The FMM DLP evaluation is significantly more expensive than the FMM
SLP due to the added cost of computing the Hessian, which reduces the
relative speed-up of the FMM DLP. This poses a challenge, as the DLP
integral must be evaluated in every GMRES(k) iteration. However, since
the Hessian contributions are independent of the solution variable u(x), we
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Figure 2: Comparison between non-FMM and FMM evaluations of the SLP and DLP
integrals. Panel (a) shows the evaluation time for both integrals for each method, along
with linear and quadratic scaling lines. In panel (b), the speed-up of the FMM over the
standard non-FMM integral evaluation is shown.

compute them only during the first iteration. In subsequent iterations, only
potential and gradient evaluations are required at the targets, with fewer
sources, reducing the cost to a level comparable to the FMM SLP evaluation
(see dotted red lines in figure 2).

4. Adaptive mesh refinement algorithm

Aside from the cost of evaluating the surface integrals, a primary chal-
lenge of using the BEM to track droplet deformation is the requirement that
the surface grid deform to track the evolving shape of the droplet interface.
This is especially important during pinch-off events as the droplets break up,
during which the local radius of the droplet tends towards zero. To resolve
the changing geometry of the interface, we employ an AMR algorithm similar
in concept to that of Cristini et al. [50], although the present method uses
some alternative techniques from graphics/computer aided design software
and is the first to our knowledge to be applied to Lagrange triangle elements.
An overview of the present AMR method is given here, with details of each
algorithm left to Appendix B.

The current algorithm generally follows that outlined by Botsch et al. [51],
as depicted in algorithm 1, although some modifications have been made
for the six-node elements and overall robustness. The AMR algorithm is
performed after the update of the node positions on each time step, and
consists of smoothing, refinement, coarsening, and cell quality operations.
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Algorithm 1 Overview of the AMR algorithm.

Calculate La at each point > Equation 11
Laplacian mesh smoothing > Algorithm 2
for iter = 1 to N, dO

Refine grid > Algorithm 4

Coarsen grid > Algorithm 5

Flip edges > Algorithm 6

if no topology changes then

return

end if

Laplacian mesh smoothing > Algorithm 2
end for

These operations are based on a target length scale La defined based on the
formula of Cristini et al. [50] as

2

La=R —_
A A K2 + K3

= RA(2H? + K)™1/2, (11)
where R is the desired grid resolution in radians based on the above esti-
mate of the local surface radius. This definition of L ensures that the grid
resolution adapts to the local curvatures of the surface. After La is calcu-
lated at each point, the values are limited such that the maximum growth
rate does not exceed 1.3.

4.1. Smoothing operations

After calculating La, the first step in algorithm 1 is to apply smoothing
to the surface grid to maintain the cell quality of nearly equilateral elements.
This consists of Laplacian mesh smoothing and edge node adjustment steps,
detailed as follows.

4.1.1. Laplacian mesh smoothing algorithm

The Laplacian smoothing algorithm (algorithm 2) repositions the corner
nodes of the elements using weights proportional to the neighbor element
areas and target length scales, similar to Dunyach et al. [52]. This weighting
is used to construct the coordinates of a target point using the adjacent

elements using

jelmEAadj

Z wielm)

jelmeA q4;

T, = , (12)
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where Y™ are the barycenters of the adjacent elements and the weight for
each element is chosen as

6 -2
i jelm 1 jelm,j
wbem) _ ) (a > L )> ’ (13)

Jjpt=1

where S(Ajdm) and jpt = 1,...,6 are the area and nodes of element jelm. The
choice of this weight was found to reduce the required iterations in algorithm
1 compared to that suggested by Dunyach et al. [52] by properly retaining
refined elements in regions of high local curvature and avoiding the diffusive
‘low’ of points into coarser regions.

After calculating the target point in equation 12, x; is projected onto the
tangent plane using the coordinates and normal (x and n) of the original
node as ¢ = ¢;+n[n - (x — x;)]. Then the original point is updated using
Tpew = (1 — () + (it with a smoothing parameter 0 < ¢, < 1. This
smoothing operation is performed for up to 10 iterations, or until the maxi-
mum point displacement falls below a given threshold. After this point, the
updated corner nodes are projected back onto the existing grid surface, where
the other solution variables are interpolated to the new point. This ensures
that the mesh smoothing operation preserves the shape of the droplet sur-
face, as opposed to most (non-feature-preserving) Laplacian mesh smoothing
algorithms, which shrink or lose details of the surface [51].

4.1.2. Edge node adjustment scheme

After the corner nodes have been adjusted using the Laplacian smoothing
scheme, the position of the edge nodes needs to be adjusted to lie between
the adjacent corner nodes. This is also necessary to preserve the interpola-
tion accuracy of the Lagrange basis functions to avoid the corrective terms
suggested by Pozrikidis [44]. The adjustment scheme (algorithm 3) uses a
spring-damper analogy, whereby an artificial point slides along the surface of
the adjacent elements to minimize the summed distance between the point
and the adjacent corner nodes. The effect of the algorithm can be explained
physically as a pseudo surface tension between the edge node and the ad-
jacent corner nodes, and was found to significantly improve cell qualities at
high droplet deformations.

4.2. Grid topology operations
Following the mesh smoothing, a number of mesh restructuring operations
are performed to reach the target cell size distribution and maintain the cell
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(a) Edge split (b) Cell split (c) Edge collapse (d) Edge flip

-—

Np < Na+2 NA < NaA+6 NA +— Np—2 Na < Np
N, < N, + 4 N, < N, +12 N, < N, —4 N, < N,

Figure 3: Depiction of the edge split (a), cell split (b), edge collapse (c), and edge flip (d)
operations in the AMR algorithm. Points and edges to be operated on are shown in red,
new points/edges are shown in blue, and green highlights indicate points requiring new
pt — elm connectivity. The original element numbers are labelled before and after the
grid operations, and the updated numbers of elements (Na) and points (NV,) are shown
below each operation.

qualities. Figure 3 depicts the individual topology operations of cell/edge
refinement (a, b), coarsening (c), and cell quality adjustments through edge
flipping (d). If no topology changes are required, the AMR loop in algorithm
1 is terminated and the method moves to the next physical time step.

4.2.1. Grid refinement algorithm

In the grid refinement step (algorithm 4), the code visits each edge of the
mesh and marks the edge if its length exceeds 4L /3, an optimal criterion
defined by Botsch et al. [51|. Elements having multiple marked edges are
subject to cell splitting (figure 3(b)), while those with only one marked edge
are split through that edge (figure 3(a)). The choice to perform cell splitting
instead of purely relying on edge splitting [51, 52| improves the grid quality
by producing more closely equilateral elements before smoothing. For each
newly created point, the surface variables are interpolated and the relevant
element and point connectivity must be updated.
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4.2.2. Grid coarsening algorithm

It is also important to remove cells in regions of low surface curvature
to limit the computational cost of the BEM. In this case, a coarsening step
(algorithm 5) is performed on each edge of the grid to check if the edge is
shorter than the optimal edge length criterion 4L /5 [51]. If so, the edge is
collapsed, as shown in figure 3(c), and the associated connectivity is updated.

The surrounding edge nodes are then repositioned according to the algorithm
described in §4.1.2.

4.2.8. Cell quality adjustment

After the refinement and coarsening steps, the quality of the cells is im-
proved by flipping edges to produce more equilateral elements, as shown in
figure 3(d). Botsch et al. [51] suggest flipping a given edge if doing so would
decrease the deviation of the valences of the surrounding corner nodes from
the desired valence (six) of a two-dimensional lattice of equilateral triangles.
However, we found that this method occasionally produced undesirable cell
qualities and even invalid cells. Instead, we use the Delaunay triangulation
method of Cristini et al. [50] (algorithm 6) to flip the cell if the edge-opposite
node-to-node distance is smaller than the sum of the projected distances from
the edge-opposite nodes to the cell circumcenters. This does not result in
a change to the number of elements or points, but the flipped edge node is
repositioned, and the local connectivity is updated.

4.8. Leveque deformation test case for the AMR scheme

To evaluate the AMR, we employ the popular droplet deformation test
case introduced by Leveque [53]: a sphere of radius ¢ = 0.15 at an initial
position (0.35,0.35,0.35) is advected over a period 7' = 3 by a velocity field

QSinzéﬂx))sin(?ﬂy% singﬂzg <7r > "
u = | —sin(272) sin?(7y) sin(272) | cos (=t .
— sin(27x) sin(27y) sin®(72) r

The droplet position is advected in time by disabling the evaluation of the
BEM equations and directly advecting the droplet surface using equation 14
with RK2 time stepping. The surface of the droplet is tracked with a target
grid resolution of Ra = 0.2 radians.

Figure 4(a) shows the evolution of the surface, demonstrating the adap-
tive refinement of the highly-curved edges of the deformed droplet and the
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coarsening as the droplet returns to a sphere. We note by visual inspection
that the shape of the droplet properly returns to a sphere after one period.
To quantitatively demonstrate the feature-preserving behavior of the AMR
algorithm, the post-time step volume renormalization used in the BEM is
disabled, and the evolution of the droplet volume is recorded. As shown in
figure 4(b), the total change in volume over the simulation is less than 0.2%
of the initial volume. This justifies the < 1075 volume renormalization used
in the actual droplet simulations.

Figure 4(c) shows the evolution of the grid size (Na and N,) as the mesh
adapts and coarsens to resolve the evolving curvature of the surface. Since
equation 14 defines a time-reversible velocity field over the period T (as
evidenced by the droplet shape in figure 4(a)), the grid size should ideally
also be symmetric in time. Figure 4(c) displays nearly symmetric profiles
of Na and N, about 7'/2, confirming that the refinement and coarsening
operations properly compliment each other.

Figure 4(d) displays this remeshing time plotted against N, where the
points are colored by the number of iterations of the AMR algorithm. Note
that the maximum number of iterations was limited to N, = 10. As demon-
strated in the figure, the computational cost of the AMR scales as O(N}),
equivalent to that of the FMM-accelerated BEM. Aside from the scaling of
the method, the overall cost can be reduced by limiting the number of re-
quired AMR iterations to reach an optimal grid. The times in which fewer
grid restructuring operations are required are in parts of the deformation
period with smaller surface distortions per time step (the peak and trough
of the cosine wave, corresponding to the minimum and maximum grid sizes).
This hints at the interplay between the choice of time step size and the cost
of the AMR. We note that the actual simulations of droplet deformation
have much less surface distortion per time step than this test case, and typ-
ically the cost of AMR for the simulations is around a quarter of the total
simulation time (see §5.1). However, the dependence of the AMR cost on
the number of iterations highlights the importance of properly choosing the
weighting of the mesh smoothing algorithm, which was selected in equation
13 to reduce the number of topological AMR operations.

4.4. Definition of a droplet breakup criterion

Finally, to enable efficient simulation of droplet dynamics up to the point
of breakup, we devise a criterion to determine when the droplets have entered
the pinch-off regime such that the simulations can be terminated immediately
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Figure 4: The droplet deformation numerical test case introduced by Leveque [53]: the
initially spherical droplet is deformed by the unsteady velocity field given by equation 14,
producing the deformation history shown in panel (a). Panel (b) shows the change in the
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grid size across the deformation in terms of number of elements (Na) and points (IN,).
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prior to breakup. We choose not to simulate the actual breakup of droplets, as
our focus is on the dynamics leading to breakup rather than daughter droplet
evolution, and breakup modeling would require complex mesh splitting and
surface reconstruction within the BEM framework [50, 42]. In order to detect
the onset of breakup in the pinching regime, we employ an algorithm that
checks three criteria at each grid point:

1. Whether the minimum local principal curvature of the surface has be-
come concave (min(k;2) < 0), such that the drop has a neck.

2. Whether the maximum local principal curvature corresponds to a ra-
dius below a specified breakup radius threshold: max(r;2) ™' < Threakup =
a/20 (similar to Zinchenko and Davis [42]). While a general choice for
this threshold likely depends on Ca, the present value is justified in
§5.7.

3. Whether the local surface-normal velocity points into the drop, similar
to the contraction parameter defined by Kim and Moin [54], although
we note that the rigid-body component of the droplet surface velocity
must be subtracted during this computation, since the droplet may
be spinning or translating during breakup. The criterion is therefore
expressed as (u — (V) — (2) x x) - n < 0.

If these three criteria are met at a point, the algorithm goes on to check
if these statements hold for all points around the neck circumference by
constructing the plane associated with max(r;2) using the cross product of
its principal direction and the surface normal. Each element intersecting this
plane is identified, and the above criteria are evaluated for its node closest
to the plane.

5. Numerical experiments

Having described the use of the TURB-Lagr HIT database [23| and the
present BEM algorithm, we move to the physical problem at hand. Namely,
we consider the deformation of droplets along the trajectories in HIT (Re,. ~
310) at A = 1 and a capillary number of

Cq = M@ _ et

= — =0.3. 15
o oTy (15)

In the simulations, each droplet is initialized as a sphere of radius a at t = 0,
which is allowed to resolve in response to E*(t) from the HIT trajectory.
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Note that this initial condition results in some transient period after this
initial condition during which the droplet is out of equilibrium with the flow.

Before conducting the numerical experiments, we first determine the grid
resolution at which the results converge and validate the BEM through com-
parison to the MM model across a range of A at lower Cla.

5.1. Grid convergence

To select a grid resolution of suitable accuracy at minimal computational
cost, we conduct droplet deformation simulations at grid resolutions from
RA = 0.1 to 0.4 along a single trajectory from the TURB-Lagr database
with a velocity gradient tensor history shown in figure 5(a). The point where
droplet breakup is detected is shown in the figure, along with the shape of
the droplet at this point. Figure 5(b) shows the time history of the maximum
radius of the droplet surface over time, defined as the maximum distance of
any surface node from the droplet’s surface centroid (.. = max(||z||)).
The time histories of r,,,, for the different resolutions lie nearly on top of
each other. The differences between the simulations immediately before the
breakup detection are highlighted in the inset, where a shaded area is plotted
to show a +1 percent band around the result at the finest grid resolution.
Clearly the maximum extension of the droplet and the breakup time converge
with the grid resolution. Figure 5(c) shows the time history of Na throughout
the simulations. Here we remark that Na o Ri, such that doubling Ra
quadruples the total computational cost. To limit the cost of the simulations,
we select a grid resolution of Ra = 0.25, which was matched the results for
Ra = 0.1 within nearly 1% in figure 5(b).

Finally, we evaluate the relative cost of the AMR operations compared
to the cost of the solver in figure 5(d). For the selected Ra, the cumulative
AMR time falls below 20 percent of the cumulative solver time by the end
of the simulations, indicating that the cost of the AMR is relatively small.
The only point at which the AMR may take longer than the solver time is at
the very beginning of the simulations, which contributes little to the overall
cost.

5.2. Comparison to the Maffettone-Minale model

To validate the accuracy of the BEM solution, we compare its results
to a linear model of droplet deformation at low Ca, as done by Taglienti
et al. [22]. In our case, we compare the history of the maximum droplet
surface radius and droplet orientation parameter to the MM model 18] for the
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Figure 5: Results of the grid refinement study for resolutions Ra = 0.1 to 0.4 (cool to
warm colors). The velocity gradient tensor history is shown in panel (a), along with the
droplet shape at the point of breakup. The maximum radius of the droplet surface versus
time is shown in panel (b), with the inset showing a zoomed view of the point where
breakup is detected, where the shaded region represents a 41 percent range from the
finest resolution. Panel (¢) shows the number of elements for each case, and the ratio of
the cumulative remeshing to solve time is shown in panel (d).
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trajectory shown in figure 5(a). The droplet orientation parameter [13, 22| is

a measure of the alignment of the droplet shape with the strain rate tensor
5% =1 (E®+ (E*)"), and is defined as

~ 0o~
VUmaz * S * Umaz

(8% : §%)!/?

where ., 1S the unit vector in the direction of maximum deformation
(Tma:p)'

We consider a capillary number of Ca = 0.05 and viscosity ratios of
A =0.1, 1, and 10 to confirm the accuracy of the SLP and DLP across two
orders of magnitude in A. The capillary number was chosen such that the
MM model provides an accurate baseline of comparison. In figure 6, 7,4
and S from the simulations are compared to the MM model for each A. In
each case, the agreement of the simulation results with the MM model is
excellent, confirming the accuracy of the BEM for such droplet deformations
in turbulent flow histories.

5.3. Droplet statistics

Having established the grid resolution and accuracy of the BEM, simu-
lations of droplet deformation at C'a = 0.3 and A = 1 are conducted for 191
different trajectories from the TURB-Lagr database, of which 96 resulted in
breakup. Figure 7 shows cumulative distribution functions (CDFs) of the
maximum droplet length (I = 2rn,) and orientation parameter across all
simulations, compared to the results of Cristini et al. [13] at Re,, = 54. The
CDF of droplet length of the present simulations exhibits a similar median
value of 2.51 as that of Cristini et al. [13] (2.51), while the median value of 3
(0.53) is slightly higher in the present ensemble than that from Cristini et al.
[13] (0.52). Both variables have a broader distribution with longer tails than
those of Cristini et al. [13], indicating an effect related to the increased inter-
mittency of the fluctuating strain rate at higher Re,,. [26], which is different
from the effect of C'a alone. These effects at the same C'a = 0.3 of Cristini
et al. [13] indicate that the nominal C'a based on 4, = 7, ! is insufficient to
characterize the droplet deformation behavior across Rey,.

To investigate the correlation of [ and [, figure 8 presents the joint proba-
bility density function (PDF) of these two variables. The logarithmic scale of
the contours emphasizes that a vast majority of the droplet lifetime is spent
near the median values of [ and . Increasing [ is associated with a decrease
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Figure 6: Comparison of the maximum droplet surface radius (a,c,e) and the droplet
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for the velocity gradient tensor history shown in figure 5(a) at Ca = 0.05. Results are

shown for viscosity ratios A = 0.1 (a,b), 1 (¢, d), and 10 (e, f).
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of 3, although there are also fewer events where § < 0. During breakup
events, [/a is generally past the horizontal extent of the figure, emphasiz-
ing the rarity of such events. To investigate these breakup events in detail,
ensemble-averaged statistics near breakup are presented in the next section.

5.4. Near-breakup behavior

We consider the behavior of the droplet close to breakup by examining
ensemble-averaged histories of [ and 8 within 507, of breakup, which are
shown in figure 9(a) and 9(b), respectively. From figure 9(a), we see that the
start of the final droplet deformation occurs at approximately 157, from the
breakup, a similar result to that reported by Cristini et al. [13|. However, the
average final droplet length attained at breakup in the present case is around
double that of Cristini et al. [13] at Re,, = 54, likely affecting the size of
the daughter droplets after breakup. This effect is likely due to the intensity
of extreme fluctuating strain rate events at the present Re), ~ 310. Figure
9(b) shows that while the average 8 at breakup is similar to Cristini et al.
[13], the values further away from breakup are lower than those reported in
their work, despite the fact that the median (8 is higher in the present study
(figure 7(b)). This difference may be due to the long tail of the 5 distribution
in the current case, or related to a smaller ensemble average in Cristini et al.
[13].

Since viscous droplet breakup is a direct consequence of neck formation
and pinch-off, we also present ensemble-averaged statistics of the neck radius
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of the droplet approaching pinch-off in figure 9(c). The neck radius is de-
fined, following the first two criteria in §4.4, as the maximum local principal
curvature over all mesh points where the minimum local principal curvature
is negative (concave). Note that since a neck is not necessarily present at
all times, the number of samples in the (r,..) ensemble decreases away from
the breakup point. Therefore, we present two sets of statistics in figure 9(c)
along with their respective sample counts: first the ensemble-averaged across
all necks, and secondly, the ensemble-average for only the last neck leading
to breakup. The number of samples for the “last neck” ensemble decreases
rapidly at around 107, from breakup, providing evidence that for almost all
breakup events, neck formation is triggered by the extension shown in figure
9(a) rather than existing before the onset of the final breakup extension.
Note that the low sample count away from the breakup point, together with
the definition of (ryeu), causes spurious peaks of this data, since before the
pinch-off regime the location of the minimum neck radius can shift on the
mesh as the AMR algorithm dynamically adds and removes mesh nodes.
The ensemble average across all necks demonstrates that there are inter-
mittent subcritical necks in the droplet shape with a mean value of around
(rneck)/a = 0.6 that are not associated with the breakup event. Note that
the falling number of samples at larger (¢, —t) in the ensemble of all necks is
influenced by the lack of data points for breakup events which occur less than
507, from the start of the simulation, rather than suggesting a correlation
between earlier neck formation and the final breakup event.

To investigate the stresses acting on the droplets before breakup, the
ensemble-averaged strain rate eigenvalues, (Ag), are plotted in figure 9(d),
along with the component of the strain rate tensor acting in the direction
of the droplet extension (the numerator of § in equation 16). We find that
(A1) begins to peak near the same point where (I) begins to diverge in figure
9(a). This is accompanied by an even stronger negative peak of (A3). Even
though the maximum strain rate peaks strongly, the misalignment of the
droplet with the mean flow (decreasing (/3)) causes the actual extensional
strain rate along the droplet’s long axis to decrease within 107, of breakup.

5.5. Strain rate intermittency and rare events

To investigate the source of this strong strain rate fluctuation before
breakup, figure 10 shows the probability density functions (PDFs) of Ay
from the TURB-Lagr database plotted as solid lines in semilogarithmic (fig-
ure 10(a)) and linear scales (figure 10(b)). The same PDFs conditioned on
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the existence of a neck on the droplet (condition 1 from §4.4) are plotted
with dashed lines in the same figure. The roughness of the tails of the PDFs
are due to the limited number of samples of the present ensemble. As evident
through comparison of the PDFs, extreme events from the tails of the dis-
tributions are contributors to the most severe deformations and breakup of
the droplets, and the conditional PDFs indicate even stronger non-Gaussian
behavior than the baseline PDF. As opposed to the simulations of Crialesi-
Esposito et al. [8], the present one-way coupled simulations offer no mecha-
nism to generate vorticity in the surrounding HIT through capillary action,
and the droplet breakup is a result of the HIT intermittency, similar to the
mechanism proposed by Vela-Martin and Avila [5] for larger K-H droplets.

As a result of the droplet sensitivity to rare events and the intermittency
of the small-scale turbulence, the local instantaneous dissipation rate, e, that
triggers the droplet breakup tends to be larger than the mean dissipation (¢).
Therefore, the local Kolmogorov scales decrease, and ¥, and the effective
capillary number increase. While the mean capillary number, Ca, describes
mean behaviors of the system, breakup events are associated with the extreme
fluctuations in e, suggesting that the critical capillary number for breakup
has some relation Ca,, ~ CaRefT. As argued by Vela-Martin and Avila [5],
observations of droplets for this Ca.,. may only be possible after long times
due to the rarity of the requisite intermittent events. It is also well known
that dissipation quantities (and resulting strain rates) become increasingly
non-Gaussian at higher Re,, [26].

5.6. Pinch-off behavior

Finally, we examine the pinch-off behavior of the droplets as they ap-
proach breakup. In all trajectories resulting in breakup, the droplets form
a symmetric double neck after the strong extension of the droplet, where
the symmetric shape is due to the imposition of Stokes flow on the droplet
scale (a typical double-neck shape is shown in figure 5(a)). These terminal
droplet shapes are consistent with those reported in Cristini et al. [13] and
Milan et al. [21]. The result is that both ends of the droplet undergo pinch-
off, resulting in two daughter droplets plus a long, nearly cylindrical central
filament, which may undergo a Rayleigh-Plateau style instability under re-
laxation.

Figure 11(a) shows the time history of the minimum neck radius (rpeck)
approaching breakup for each trajectory, along with the ensemble average
shown as a dashed line. Clearly the histories of r.q are strongly dependent
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Figure 10: Probability density functions in semilogarithmic (@) and linear (b) scales of the
largest (A1, blue), middle (As, green), and smallest (A3, red) eigenvalues of the fluctuating
strain rate tensor from the TURB-Lagr database [23] (solid lines). The PDF of the same
eigenvalues for the present simulation ensemble conditioned on the existence of a neck on
the droplet are also shown with dashed lines.

on the local history of the droplet shape and strain field. In many cases,
the neck does not experience a monotonic contraction, exhibiting multiple
local minima/maxima as it approaches breakup. Often a neck may develop
but recover without inducing breakup. This emphasizes the importance of
choosing an appropriate value of .. to terminate the computations such
that local minima are not misidentified as breakup events, which is discussed
in §5.7.

To investigate the ultimate regime of the pinch off, we extend the simu-
lation for the trajectory from figure 5(a) by over 0.57, and plot the resulting
minimum neck radius in figure 11(b). As shown in the figure, the scaling of
Tneck transitions from a nonlinear scaling to a linear scaling of rpeq ~ (t, —t)*
before breakup, as expected in the Stokes regime [55|. The ultimate breakup
time in this relation, ¢,, was calculated based on a fit of r,eq in the linear
regime. While the neck does eventually transition to this linear scaling, it is
notable that this scaling only exists for a tiny fraction of the overall contrac-
tion history of the neck towards pinch-off, as evidenced by the same black
line plotted in figure 11(a). The insets of figure 11(b) illustrate the mesh
refinement around the miniscule neck of the droplet, emphasizing the effec-
tiveness of the AMR algorithm and the decision to terminate the simulation
before the computationally-expensive linear regime.
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Figure 11: Necking behavior of the droplets before breakup. The neck radius history for
all trajectories is shown in linear scale in panel (a), along with the average neck radius
history in the dashed black and gray line. Note that the abscissa in this case is based
on the simulation termination time, t., where the neck radius falls below a/20. Panel (b)
shows the neck radius versus the time to breakup for the trajectory shown in figure 5 in
logarithmic scale, where the breakup time (¢;) has been calculated based on a fit to the
data in the linear regime. Scalings of (¢, —t)! and (¢, —t)?/* are shown in solid and dashed
gray lines, respectively. The insets show the shape of one end of the droplet in the linear
regime and a zoomed view of the neck.

5.7. Subcritical neck formation

Given that neck formation is a requirement for pinch-off and subsequent
droplet breakup, we investigate the statistics of necking events that are not
associated with breakup as a continuation of the discussion associated with
figure 9(c). In these “subcritical” events, a neck is formed on the droplet but
does not enter the final pinch off regime. Instead, 7. reaches a minimum
value and subsequently grows, avoiding breakup.

To properly discern breakup and non-breakup events, it is important
to establish that the a/20 threshold for the neck radius used in §4.4 does
not misidentify subcritical necks as breakup events, as we desire that all
Tneck < @/20 result in breakup. To establish the sufficiency of this a/20
threshold, figure 12 plots a histogram of local minima of the neck radius across
the ensemble, excluding breakup events. The results in figure 12 demonstrate
that the chosen breakup threshold of a/20 (vertical dashed line) is below the
left-hand tail of the distribution, where the number of droplet necks which
undergo recovery falls off steeply. The threshold is also not so far to the left
of the distribution as to unduly increase the computational cost.

Using the ensemble of subcritical neck minima from figure 12, the ensemble-
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Figure 12: Histogram of occurrences of local neck minima for all trajectories, excluding
final breakup events. The vertical dashed line denotes the numerical threshold for droplet
breakup.

averaged statistics of (Ag), (Tneck), and () are presented in figure 13, centered
about the time, ¢, at which 7, reaches a local minimum. Figure 13(a)
demonstrate that these necking events are associated with an elevated max-
imum strain rate eigenvalue (A;) for around 107, preceding ¢, and a local
spike in the eigenvalues at only 0.57, from t;,. The peaks in (Ay) quickly
drop over a timescale of 7,, centered around ¢,,;,, before decaying to their av-
erage values by around 67, after ¢,;,. One notable result is that as opposed
to figure 9(d), the droplet axis projected strain rate (Upax - S™ - Umax) does
not actually achieve a maximum at the point where (A;) peaks, and actually
remains suppressed at ty,i, + 107, compared to its value at ¢, — 107,.
Figure 13b shows that (I) increases in response to the elevated (A;)
throughout the ensemble, while also exhibiting a local maxima just past
tmin in response to the locally-elevated strain rate. (rnec) steadily decreases
before ¢, until the local maxima in (Ay) just before ¢y, at which point
(rneck) rapidly decreases. However, this minimum of (rjeq) is short-lived,
having a lifetime of only 2.57,. (rnec) rapidly increases past ty,;, in response
to the local contraction of (). After the local minimum of (I) at approxi-
mately 27, from tin, (Theck) actually continues to slowly increase despite (I)
continuing to rise, perhaps due to the misalignment of the droplet axis with
the flow. This could also be an artifact of averaging over some cases where
the neck fully recovers and others where the droplet goes on to break up.
By comparing the time history of subcritical droplet necking events to those
resulting in breakup in figure 9, we elucidate some clues about which types
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Figure 13: Ensemble-averaged statistics of subcritical necks centered about local neck
minima. Panel (a) shows the ensemble-averaged strain rate eigenvalues quantities, as
plotted in figure 9(d), while panel (b) shows the ensemble-averaged droplet length (dashed
line) and neck radius (solid line).

of disturbances and droplet shapes are most susceptible to result in breakup.
Specifically, while both breakup events (figure 9(d)) and subcritical events
(figure 13(a)) exhibit an elevated (A;), subcritical events are associated with
a peak of (A;) with a timescale of 17,, during which the droplet axis mis-
aligns with respect to the strain field, inducing a contraction of the droplet
length and recovery of the neck. Given the rotational misalignment of the
droplet, it would be interesting in future studies to also investigate the effect
of the rotation rate tensor and associated quantities (e.g. enstrophy; vor-
tex stretching/tilting), especially given the recently-established connection
between larger K-H droplets and enstrophy generation [9].

6. Conclusions

This work presented a BEM framework capable of resolving droplet breakup
across a range of capillary numbers (Ca) and viscosity ratios (\), and pro-
vided detailed pinch-off and droplet statistics at a higher Reynolds number,
Rey, ~ 310, than the work of Cristini et al. [13], which was confined to
low-Re,,. [27, 26]. Distributions of the droplet length and orientation were
found to exhibit longer tails in the present simulations than under the same
conditions at lower Re,,, echoing the non-Gaussian behavior of strain rates
under extreme dissipation events at higher Re,, [26]. As in Cristini et al.
[13], the droplets undergo an elongational strain near breakup, followed by
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a misalignment with the externally-imposed flow. However, the average ul-
timate droplet length in the present simulations is approximately two times
higher than at lower Re,,, presumably affecting the daughter droplet sizes
produced by breakup even at the same C'a and . This highlights the mul-
tiscale nature of sub-Kolmogorov-scale droplet breakup, even in the ideal
assumption of local Stokes flow. This is a natural consequence of the droplet
breakup dependence on extreme strain rate events, which link directly to the
intermittency of the dissipation rate, echoing the conclusions of Vela-Martin
and Avila [5] for larger droplets.

An investigation of the pinch-off behavior of the droplet necks was con-
ducted to reveal a non-monotonic, non-global contraction of the neck radius
near breakup. An extended simulation of a trajectory past the numerical
pinch-off threshold demonstrated that the shift into the linear regime ex-
pected from similarity solutions of viscous neck pinch-off occurs only in the
final stages of the neck contraction. Statistics centered about the subcritical
minimum neck radii demonstrated that subcritical (non-breakup-inducing)
events are characterized by a fluctuation in the strain rates of timescale 7,
superposed on a broader period of elevated strain. This local strain rate
maximum induces a misalignment of the droplet with the strain field, induc-
ing a local extension and contraction of the droplet length and recovery of
the neck radius, avoiding breakup.

As a straight-forward extension of the present work, it would be valuable
to investigate behaviors across the (Ca, A\, Re,,) parameter space, especially
to investigate the Re,, -dependence droplet breakup statistics and daughter
droplet sizes. This work could also draw upon the findings of Saeedipour
and Schneiderbauer [9] to investigate how their vortex stretching/capillary
enstrophy balance extends to the sub-Kolmogorov regime. Further work
could also include droplet behavior with insoluble surfactants 33, 34, 35],
or trajectories in more complex flows [15, 16]. In particular, studying realis-
tic emulsification devices using a CFD-BEM framework could allow droplet
breakup statistics to be connected to specific regions of the mixer.

Finally, considering the multiscale nature of the problem, it would be
valuable to investigate more extreme regimes of droplet dynamics, focusing
on either inter-scale or nanoscale effects. First, it would be interesting to
consider droplets near the Kolmogorov scale (d ~ n) instead of the van-
ishing limit d < 7. Even for cases where d < 7, droplet elongations may
become long enough that there are interactions with the Kolmogorov-scale
eddies such that the assumption of Stokes flow and a locally linear velocity
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gradient are no longer valid, such that the present BEM framework would
no longer be appropriate. This is especially evident in the present results,
where droplet elongations are larger than at lower Taylor Reynolds numbers
[13]. Secondly, as droplets approach the nanoscale, one could investigate
low-surface-tension droplet breakup with fluctuating hydrodynamic effects,
which have been studied in relation to the Rayleigh-Plateau instability at
the nanoscale |56, 57, 58|.
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Appendix A. Details of the BEM discretization

The following details the discretizaiton and convergence properties of the
present BEM algorithm. The integrals in equation 8 are performed using
a three-point Gauss-Legendre quadrature [45] based on a mapping of the
element from three-dimensional space (z,y, z) to the unit right triangle (¢, n),
as shown in figure A.14. The values at the quadrature points are interpolated
from the solution variables at the six edge and corner nodes using

6

$(&m) =D &iNi(&,m), (A1)

=1

where the quadratic shape functions for the Lagrange triangle are those listed
in figure A.14.

In equation 9, the differential area associated with the quadrature point
is calculated as

83:0 a.’IJO
X —_—

dS(CC()) = wquadhsdgdn = Wqyad 8_5 87]

d&dn, (A.2)
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Figure A.14: The six-node Lagrange triangle element used in the present BEM algorithm
in (z,y, z) space and mapped to the unit right triangle (£,n). The shape functions (N;)
describing the element are also listed.

where wgyqq is the Dunavant weight for the quadrature point and hy is the
square root of the determinant of the metric tensor of the surface. Figure
A.15 shows the error associated with the integration of a specified scalar field
on the surface of an ellipsoid with semi-major axis lengths of (1,0.5,0.3) at
different grid sizes. The grids were discretized by subdividing an icosahedron
grid on a sphere and scaling it to the ellipsoidal shape. We choose the number
of quadrature points as Kao = 3 to match the second order interpolation
accuracy of the Lagrange triangle elements, and as expected, figure A.15(b)
shows that the integration error converges as N>
The relevant &- and n-derivatives on the surface are evaluated following
equation A.1 as
O¢ 0N, d¢ 0N, A3

The surface normal vector calculation follows as the cross product of the
surface tangent vectors:

n(xo) — hi <aa—$£° « %";’;) | (A4)

Figure A.16 shows the convergence of the mean and maximum surface normal
error with grid resolution, again for an ellipsoid with semi-major axis lengths
(1,0.5,0.3). We find in figure A.16(a) that the mean error reduces with the
number of elements (Na) with second order as Nx?, while the maximum
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error in figure A.16(b) decreases with an order between N,' and N;*. We
also compare the convergence to the BEM of Zinchenko and Davis [59], which
is based on a discretization of three-node (flat) triangles, requiring that the
surface normal be calculated based on a local fit of a paraboloid-spline to
the local region of nodes. We find that our method converges at a similar
rate for both the mean and maximum errors, but with significantly higher
accuracy (around two orders of magnitude) across all grid sizes.

In addition to the surface normals, of particular importance is the calcu-
lation of the local mean surface curvature of the droplet, since it plays an
important role in the droplet evolution due to surface tension effects. The
curved Laplace triangular elements lend themselves naturally to the calcula-
tion of the surface mean curvature (H) and Gaussian curvature (K), which
are evaluated based on the first and second fundamental forms of the curved
surface as

EN —2FM + GL LN — M?
H=—=Gc—rm =BG (A.5)
where
_ 9z Oz _ Oz Oz _ Oz Oz
e ot o ac op T o oy (A6)
9% On . Om On . Om On
o6 o¢’ o Iy’ an  On

As was performed for the surface normal calculation, we also examine the
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Figure A.16: Mean (a) and maximum (b) errors in the calculation of surface normal
vectors for an ellipsoid with semi-major axis lengths (1,0.5,0.3) compared to the results
of Zinchenko and Davis [59].

order of accuracy of the mean curvature calculation compared to the results
of Zinchenko et al. [47]. In this case, we consider a spheroid with semi-major
axis lengths of (1,0.4,0.4), again discretized by successive subdivision of an
icosahedron grid. Figure A.17 shows that both the mean and maximum
curvature errors for the present method converge as Ngl. Comparing to
the contour integral and paraboloid fitting curvature calculation methods of
Zinchenko et al. [47], we find that the present method has a similar first order
accuracy, but results in a lower average error versus Zinchenko et al. [47]. In
terms of the maximum error, their results show similar error magnitudes to
the present method, perhaps due to the locally-fitted curvature calculation
of their method versus our truly local curvature calculation.

Appendix B. AMR component algorithms

The Laplacian mesh smoothing, edge node adjustment, grid refinement,
grid coarsening, and edge flipping algorithms are outlined in algorithms 2,
3, 4, 5, and 6, respectively. As a general comment on notation, ielm and
ipt correspond to global element and node numbers, while jpt and jelm
correspond to local numbering.
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Algorithm 2 The Laplacian mesh smoothing algorithm.
Initialize @, < @ for each point
for iter = 1 to Ngpooth do > Laplacian smoothing of corner nodes
for ipt =1 to N, do
if ipt is a corner point then
Initialize x; < 0, Wgym < 0
for neighbor elements jelm do
Calculate element area Sa

-2

6
1 ,
Calculate element weight w < Sa 5 g prt)
Jjpt=1
1S
Calculate element barycenter x; < = E 2Pt

Jjpt=1
Ty — Ty +wWxy

w«sum % wSum + w
end for
Ty < mt/wsum
x; — oy + nlirt) {n(ipt) . (a:(ipt) — :ct)] > Project x; onto tangent plane

() (1 —\)x0PY N\ x, > Smoothing coefficient 0 < Ay <1
end if
end for
if max(||Zpew — ||) < threshold then
exit
end if
end for
Project new corner nodes x,.,, onto existing grid surface and interpolate variables
for ipt =1 to N, do > Adjust edge node positions
if ipt is an edge node then
Adjust (Y to lie between neighboring corner nodes > See algorithm 3
end if

end for
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Algorithm 3 The edge node adjustment algorithm.

Given: Edge point ipt

Initialize Xpe — @), V 0

Calculate x,.f as the average of neighboring two corner node coordinates

Determine which neighbor element jelm that ipt should be adjusted on

Determine initial local coordinates (£, 7) of ipt on jelm

repeat
F « Lref — Lnew
Calculate normal vector n at (£,7) on jelm
F <+ F—n(F-n) > Remove normal component
V « V +di(F -2V) > where dt = 0.27

23

on .
Calculate F and F at (£,m) on jelm

§e£+dt(V-a£)
ox

on
N4 n+dt (V . 8:13)
Interpolate @, coordinates at (&, n)
until | F|| < tolerance
Interpolate variables at (£,n)
xP)  x,00,
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Algorithm 4 The grid refinement algorithm (both cell and edge splitting).

for ielm =1 to Na do
for edges jedge =1 to 3 on ielm do
if edge length > 3L then > Optimal criterion defined by Botsch et al. [51]
Record edge jedge to split
end if
if more than one edge recorded then
Record element ielm to split
exit
end if
end for
end for
if no elements to refine then
return
end if
repeat > Ensure regions of cell splits are surrounded by edge splits
for ielm =1 to Na do
if ielm is not marked for cell split then
for edges jedge =1 to 3 of ielm do
if neighbor element is marked for cell split then
if jedge not marked to split then
Record edge jedge to split
else
Record element telm to split
end if
end if
end for
end if
end for
until no new splits are recorded
Record Ngld <~ Na
Allocate new grid storage using: Na < Na + 3(# cell splits) + (# edge splits)
Ny < N, + 6(# cell splits) + 2(# edge splits)
for ielm = 1 to N3? do
if ielm is marked for cell split then
for edges jedge =1 to 3 on ielm do
if edge points haven’t already been created then
Create 2 new edge points and interpolate variables
else
Record global indices of the 2 existing edge points
end if
end for
Create 3 new interior points and interpolate variables
Create 3 new elements and record elm — pt connectivity
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else if ielm is marked for edge split then
if edge points haven’t already been created then
Create 2 new edge points and interpolate variables
else
Record global indices of the 2 existing edge points
end if
Create 1 new interior point and interpolate variables
Create 1 new element and record elm — pt connectivity
end if
end for
Update all pt — elm and elm — elm connectivity
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Algorithm 5 The grid coarsening algorithm.
ipt <0
repeat
ipt < ipt + 1
if ipt is an edge point then
if edge length < 2L, then > Optimal criterion defined by Botsch et al. [51]
Record elements to remove
for attached elements jelm =1 to 2 do
if valence of opposite corner node < 4 then
cycle outer
end if
Record points to combine
end for
Record points to remove
for both neighboring corner nodes jpt of ipt do
for all surrounding elements ielm of jpt do
Add ielm to list of surrounding elements
end for
for all surrounding corner points ipt2 of jpt do
if [|x(?*2) — g(PY| > 1L\ then
cycle outer
end if
Add point to list of surrounding corner points
end for
for all surrounding edge points of jpt do
Add point to list of surrounding edge points
end for
end for
for all surrouding edge points do
Adjust position of edge point > See algorithm 3
if adjusted edge point creates an invalid cell then
cycle outer
end if
Interpolate variables at edge point
end for
Update local elm — pt, pt — elm, and elm — elm connectivity
Deallocate grid storage for removed points and cells: Na < Na — 2
N, < N, —4

ipt < ipt — Z ((removed points) < ipt)
end if
end if
until ipt > N,
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Algorithm 6 The edge flipping algorithm.

for ipt =1 to N, do
if ipt is an edge point then
for attached cells jelm =1 to 2 do
(jelm)
pp

Record coordinates xg of opposite corner node to edge

. jel
Record element circumcenter 2™
end for
(2) _ (1)
'Uopp A :Bopp wopp

1 2
xgipt) - :B(()p)p + chp)p

if [Jvoppll < ’(wg}z) - m(();)p) 'UOPP’ + ‘(wg,) - wz()i)p) 'UOPP‘ then

if node position azglp *) would produce an invalid element then
cycle outer

end if
Project xﬁ”’ ) to existing grid surface > See algorithm 3
Interpolate variables at new point
Update local elm — pt, pt — elm, and elm — elm connectivity

end if

end if

end for
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